Simultaneous recovery of transverse stresses at all points in a plate

R.C. Batra *, B. Alanbay

Department of Biomedical Engineering and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

ARTICLE INFO

Keywords:
Stress recovery scheme
Principle of virtual work
Finite element method

ABSTRACT

We address the challenging issue of simultaneously finding transverse shear and normal stresses at all points in a plate from a priori known values of the in-plane stresses at plate’s interior points. The principle of virtual work is employed to equate the work done by the transverse stresses to the difference between the work done by the external forces (applied surface tractions and body forces) and that by the in-plane stresses. The three transverse stresses and the virtual displacements are expressed in terms of polynomial (for example, those used in the finite element method) basis functions to deduce a system of simultaneous algebraic equations for the transverse stresses. The integrands for the right-hand side of these equations can be evaluated from the values of the in-plane stresses. The proposed scheme is advantageous over the current methods in economically evaluating accurate values of transverse stresses from the knowledge of the in-plane stresses at the Barlow points where they are most accurate. Since no spatial derivatives of the in-plane stresses are needed, this technique provides excellent values of transverse stresses. Results for three example problems are provided to illustrate the methodology and the accuracy of computed transverse stresses.

1. Introduction

Plates and shells have wide-ranging applications in civil, aerospace, and automotive industries. Analyses of their deformations using either an equivalent single layer (ESL) or a layer-wise (LW) theory for laminated and sandwich plates require fewer resources than those needed to study them as 3-dimensional structures. However, accurately ascertaining transverse stresses using displacement-based plate theories is rather challenging. Mixed plate theories that consider both displacements and stresses as variables and are based on Reissner’s variational principle (Reissner, 1984) provide reasonable values of transverse stresses but have additional unknowns; e.g., see (Carrera, 2000). All six components of stresses are needed to use 3-dimensional failure criteria for determining the first failure load and the ultimate load a plate can support.

We now describe the scheme for finding transverse stresses as taught in a sophomore (2nd-year undergraduate at most US universities) level course on Mechanics of Deformable Bodies. Based on the assumptions that a thin beam of uniform cross-section having small width \(b \) and made of a homogeneous, isotropic and linearly elastic (i.e., Hookean) material undergoes infinitesimal plane-stress deformations and obeys kinematics of the Euler-Bernoulli theory, one derives an expression for the in-plane axial (bending) stress, \(\sigma_{xx} \left(= - \frac{Mz}{I_{yy}} \right) \) at a point \(P \). As depicted in Fig. 1, the \(x \)-axis is along the beam length and passes through centroids of the cross-sections, \(M \) is the bending moment on the cross-section passing through \(P \), \(z \) the distance of \(P \) from the neutral (or the centroidal) axis, and \(I_{yy} \) the 2nd moment of area of cross-section about the \(y \)-axis parallel to the beam width and passing through the cross-section.

* Corresponding author.
E-mail address: rbatra@vt.edu (R.C. Batra).

https://doi.org/10.1016/j.ijengsci.2021.103570
Received 2 July 2021; Received in revised form 17 August 2021; Accepted 20 August 2021
0020-7225/© 2021 Elsevier Ltd. All rights reserved.
As detailed in Section 5.5 of (Gere & Timoshenko, 1990), the equilibrium equation in the x-direction of an element $\Delta x \times t$ of the beam with one side coinciding with the top surface free of tangential tractions and of thickness t provides the transverse shear stress, $\sigma_{xz} = \frac{VQ}{(b \int y_y)}$ (Eq. 5.21 of (Gere & Timoshenko, 1990) where V is the shear force and Q the first moment of the area $b \times t$ about the y-axis. The equilibrium equation for this element in the z-direction gives $\sigma_{zz} = q + \frac{\partial \sigma_{xz}}{\partial x}$ (neither derived in (Gere & Timoshenko, 1990) nor taught in the sophomore-level course). This is essentially the one-step stress recovery scheme (SRS). The shear stress σ_{xz} is a quadratic function of z, vanishes on the top and the bottom surfaces, varies quadratically over the beam height, and has the maximum value at the mid-surface.

For linearly elastic plates (or beams), the three partial differential equations of equilibrium are integrated with respect to the thickness co-ordinate z and the known traction boundary conditions on a major (either the top or the bottom) surface of the plate are used to recover the three transverse stresses at a point on the transverse normal to the plate. Note that the recovery of the transverse normal stress, σ_{zz}, requires that the first-order derivatives of the transverse shear stresses with respect to the in-plane co-ordinates (x and y) be reasonably accurately. The transverse shear stresses depend upon the first-order spatial derivatives of the in-plane stresses. Thus, second-order spatial derivatives of the in-plane stresses must be accurate to deduce reasonable values of the transverse normal stress. However, when using the first order shear deformation plate theory (FSDT) and low-order polynomial basis functions for the displacements, one gets at most accurate values of the in-plane stresses. Finding their spatial derivatives requires additional post-processing, such as using a finite-difference method on values of in-plane stresses at neighboring points. The numerical differentiation of in-plane stresses can introduce large errors.

We note that Chaudhuri and Seide (1987) employed 1-D quadratic shape functions through the thickness of each layer of the laminate to compute transverse shear stresses. Rohwer, Friedrichs, and Wehmeyer (2005) and Kant and Swaminathan (2000), amongst others, have reviewed different techniques to compute inter-laminar transverse stresses in laminates.

For transient deformations, one considers equations of motion that incorporate the inertia forces in the one-step SRS. To detect when failure initiates at a point requires using the SRS after every time step.

The accuracy of transverse stresses found with a one-step SRS can be improved upon by using a multi-step (or predictor-corrector) method, e.g., see Noor, Burton, and Peters (1990), Park and Kim (2002) and Park, Lee, and Kim (2003). In the predictor phase, Noor et al. (1990) found in-plane stresses from the FSDT displacements by including a shear correction factor and the transverse stresses with the SRS. The corrector phase is employed to improve upon the transverse stresses either by correcting the transverse shear stiffness or by modifying the through-the-thickness distribution of displacements to include both linear and non-linear terms. This

![Fig. 1](image-url)

Fig. 1. (a) Sketch of a beam and of its side view, (b) Free body diagram of beam portion of length Δx, (c) Free body diagram of a section of length Δx and height $(h/2 - z)$, and (d) Free body diagram of a section of length Δx and height Δz in the beam interior.
iterative procedure is repeated till transverse stresses have converged within a prescribed tolerance.

For laminated structures analyzed with the ESL theories, one can improve upon the accuracy of the transverse stresses by incorporating the Murakami zig-zag function (Murakami, 1986) in the presumed through-the-thickness variation of the displacement field. Carrera (2000) has reviewed various plate theories and has compared their relative performances for laminates.

Shortcomings of the one-step SRS include (i) the need to have accurate values of 2nd order derivatives of the in-plane stresses with respect to in-plane co-ordinates, and (ii) for every point of interest in the plate the integration along a transverse normal starting from either the top or the bottom major surface to find transverse stresses there. Here we present a technique that overcomes these issues since it requires only values of in-plane stresses and simultaneously finds transverse stresses at all points. We note that the computation of in-plane stresses is not addressed in this work since it has been extensively studied in several books and research papers (too many to cite here). It relies on the principle of virtual work to equate the work done by the transverse stresses to the difference in the work done by the surface tractions applied on the bounding surface and the in-plane stresses. The integrands involving in-plane stresses can be evaluated from their values at the Barlow points (Barlow, 1976) within a finite element (FE) where they are more accurate than those at other points. Of course, one can also use values of the in-plane stresses at the Gauss integration points.

We note that in this work, the in-plane stresses are assumed to be a priori known. Accordingly, we neither discuss nor develop plate theories in this paper.

The rest of the paper is organized as follows. Algebraic equations for simultaneously finding transverse stresses at all nodes of a 3-dimensional FE mesh in the plate are derived in Section 2. These equations are modified to satisfy traction boundary conditions prescribed on plate’s either the bottom or the top surface. Results for three example problems are illustrated in Section 3, and conclusions of the work are summarized in Section 4.

2. Problem formulation

We present the work for static infinitesimal deformations of a linearly elastic body and note that the procedure applies to plates comprised of functionally graded (or heterogeneous) materials. As shown in Fig. 2, we use rectangular Cartesian co-ordinates and denote the position vector of a material point by \(\mathbf{x} \), with \(x_i \) denoting its component along the \(x_i \) coordinate axis, \(i = 1, 2, 3 \). The \(x_3 \) axis is along the normal to the plate’s two major (top and bottom) surfaces. A repeated index implies summation over the range of the index.

The stress field \(\sigma_{ij} \) for a body in equilibrium under the body force \(f_i \) per unit volume and surface tractions \(t_i \) on its bounding surfaces satisfies

\[
\sigma_{ij} + f_i = 0, \text{ in } \Omega
\]

\[
\sigma_{ij} n_j = t_i, \text{ on } \partial \Omega
\]

where \(\Omega \) is the region occupied by the body, \(\partial \Omega \) the boundary of \(\Omega \), \(n \) an outward unit normal to \(\partial \Omega \), and \(\sigma_{ij} = \partial \sigma_{ij} / \partial x_j \). At a free edge, \(t_i = 0 \). However, at either a clamped or a simply-supported edge, one or more components of \(t_i \) are unknown and are to be found as a part of the solution of the problem.

For the traction boundary-value problem (BVP) defined by Eqs. (1) and (2) to have a solution within a rigid body motion, the resultant force and moment about any point due to \(f_i \) and \(t_i \) must equal zero. Henceforth, we assume that these conditions are satisfied.

Assume that the plate theory equations using constitutive relations for the plate material, surface tractions \(t_i \) prescribed on plate’s top and bottom surfaces and boundary conditions at the edge surfaces have been solved, and the in-plane stresses \(\sigma_{11}, \sigma_{22} \) and \(\sigma_{12} \) have been found everywhere in \(\Omega \). Our objective is to find from \(\sigma_{11}, \sigma_{22} \) and \(\sigma_{12} \) the transverse stresses \(\sigma_{13}, \sigma_{23} \) and \(\sigma_{33} \) everywhere in \(\Omega \) and, if needed, on the edge surfaces. Note that the three equations (1) can be solved for only three unknowns. Thus the three in-plane stresses must be known to find the three transverse stresses.

2.1. Weak formulation of the problem

We assume that the region \(\Omega \) has been discretized into \(N_e \) disjoint 3-dimensional (3D), not necessarily uniform, FEs \(\Omega_e, e = 1, 2, \ldots, N_e \).
Consider a virtual displacement field

$$\phi' = \psi_{ai} \delta d'_{ai}$$ \hspace{1cm} (3)

defined over \(\Omega \). In Eq. (3) the repeated index \(a \) is summed over its range 1, 2, ... \(N_a \), \(i = 1, 2, 3 \), and \(\delta d'_{ai} \) equals the virtual displacement in the \(i^{th} \) direction of node \(a \). The \(\delta d'_{ai} \) is not required to vanish anywhere on the boundary.

Taking the inner product of both sides of Eq. (1) with \(\phi' \), integrating the resulting equation over \(\Omega \), using the divergence theorem on the term involving \(\phi' \sigma_{ij} \), and employing boundary condition (2), we arrive at

$$\int_{\Omega} \sigma_i \phi'_{;i} \, d\Omega = \int_{\Gamma} t_i \phi' \, d\Gamma + \int_{\Omega} f_{ii} \phi' \, d\Omega$$ \hspace{1cm} (4)

where \(\Gamma = \partial \Omega \), \(d\Gamma \) is an element of area on \(\Gamma \) and \(d\Omega \) is a volume element in \(\Omega \). Eq. (4) states that during a virtual displacement \(\phi' \), the work done by internal stresses \(\sigma_{ij} \) against the virtual strains produced by \(\phi' \) equals the sum of the work due to surface tractions \(t_i \) on all bounding surfaces of the plate and the body force \(f_{ii} \). Since \(\sigma_{ij} = \sigma_{ji} \), we have

$$\int_{\Omega} \sigma_i \phi'_{;i} \, d\Omega = \int_{\Omega} \frac{1}{2} \sigma_{ij} (\phi'_{;j} + \phi'_{;i}) \, d\Omega$$ \hspace{1cm} (5)

Substituting for \(\phi' \) from Eq. (3) into Eq. (4), recalling that \(\delta d'_{ai} \) is arbitrary, expressing the integral on \(\Omega \) as the sum of integrals on \(\Omega_e \), and noting that \(\sigma_{11}, \sigma_{22} \) and \(\sigma_{12} \) are a priori known, we conclude from Eq. (4) the following.

$$\frac{1}{2} \sum_{i=1}^{N_e} \left[\sigma_{11} (\phi'_{11} + \phi'_{12} + \phi'_{13}) + \sigma_{12} (\phi'_{21} + \phi'_{22} + \phi'_{23}) + \sigma_{22} (\phi'_{31} + \phi'_{32} + \phi'_{33}) \right] \, d\Omega$$

$$= \frac{1}{2} \sum_{i=1}^{N_e} \left[\int_{\Gamma_i} t_i \phi' \, d\Gamma + \int_{\Omega_e} f_{ii} \phi' \, d\Omega - \int_{\Omega_e} \left(\sigma_{11} \phi'_{11} + \sigma_{12} \phi'_{21} + \sigma_{22} \phi'_{31} \right) \, d\Omega \right]$$ \hspace{1cm} (6)

The integral in the first term on the right-hand side (RHS) of Eq. (6) is over all six surfaces of the rectangular plate. Surface tractions \(t_i \) on the top and the bottom surfaces are generally prescribed and hence are known, but those on the remaining four surfaces may be unknown, as discussed below Eq. (9).

Using the FE basis functions, we write

$$\sigma_3(x_1, x_2, x_3) = \psi_{ai} \sigma_{3i}, \; i = 1, 2, 3$$ \hspace{1cm} (7)

where \(\sigma_{3i} \) is the value of \(\sigma_{3i} \) at node \(a \). Eq. (7) approximates a function in terms of a finite series, as is often done in the Fourier series method, where trigonometric (sines and cosines) are used as basis functions. Of course, any set of linearly independent basis functions can be used instead of trigonometric functions. Here we have used the FE basis functions for ease in evaluating the integrals involved and interpreting values of \(\sigma_{3i}(x_1, x_2, x_3) \), \(i = 1, 2, 3 \). The quality of approximation depends upon the choice of basis functions and the number of terms kept in the series.

Substitution from Eqs. (3) and (7) into Eq. (6) and following the standard approach of numerically evaluating integrals over each \(\Omega_e \) by using the appropriate Gauss quadrature rule, and assembling the element matrices into a global matrix as is done in a displacement-based approach (e.g., see (Becker, Carey, & Oden, 1981)), we arrive at

$$K \delta \sigma = F$$ \hspace{1cm} (8)

where

$$K_{aij} = \int_{\Omega_e} \left[\psi_{aj}(\psi_{ai} + \psi_{aj}) \delta_{ij} + \psi_{b}(\psi_{ai} + \psi_{aj}) \delta_{ij} + \psi_{b} \psi_{ai} \delta_{ij} \right] \, d\Omega$$

$$F_{ai} = \int_{\Gamma_a} t_i \psi_{ai} \, d\Gamma + \int_{\Omega_e} f_{ii} \psi_{ai} \, d\Omega$$ \hspace{1cm} (9)

In Eq. (9) \(\delta_{ij} \) is the Kronecker delta having values 1 for \(i = j \) and zero otherwise. Note that for \(i = 1, 2, 3 \), the matrix \(K_{aij} \) is not symmetric. The integrals in the expression for the force \(F \) can be evaluated by using an appropriate Gauss quadrature rule and values of stresses \(\sigma_{11}, \sigma_{12} \) and \(\sigma_{22} \) at either the integration or the Barlow points (Barlow, 1976) where they are most accurate. Alternatively, one can employ their values at the nodes, and use nodes as integration points, i.e., adopt Lobatto’s quadrature rule. The integrals in the
expression for \(K \) can be evaluated as usual by using the appropriate Gauss quadrature rule.

We now rewrite Eqs. (9) to facilitate the software development. Recalling that the restriction of the FE basis functions to an element gives shape functions \(N \) for nodes on the element, we write the matrix \(K \) of Eq. (9) as

\[
K = \sum_{c=1}^{N_e} \int_{\Omega_c} B_b^T N d\Omega
\]

where

\[
B_b = [B_{b1} \ B_{b2} \ \cdots \ B_{bN_e}], \quad B_b = \begin{bmatrix} \psi_{a,3} & 0 & \psi_{a,1} \\ 0 & \psi_{a,2} & \psi_{a,1} \\ 0 & 0 & \psi_{a,1} \end{bmatrix}
\]

\[
N = [N_1 \ N_2 \ \cdots \ N_{N_e}], \quad N = \begin{bmatrix} \psi_n \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ \psi_n \end{bmatrix}
\]

Similarly, we write the force vector \(F \) in Eq. (9) as

\[
F = \sum_{c=1}^{N_e} \int_{\Gamma_c} N^T \gamma d\Gamma + \int_{\Omega_c} \beta_p \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Omega
\]

where

\[
\beta_p = [\beta_{p1} \ \beta_{p2} \ \cdots \ \beta_{pN_e}], \quad \beta_p = \begin{bmatrix} \psi_{a,1} & 0 & 0 \\ 0 & \psi_{a,2} & 0 \\ \psi_{a,1} & 0 & 0 \end{bmatrix}
\]

For a rectangular plate, the first term on the RHS of Eq. (13) equals the sum on all six bounding surfaces as illustrated below.

\[
\int_{\Gamma_1} N^T \gamma d\Gamma = \int_{\Gamma_1} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma - \int_{\Gamma_2} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma + \int_{\Gamma_3} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma - \int_{\Gamma_4} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma + \int_{\Gamma_5} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma - \int_{\Gamma_6} \begin{bmatrix} \sigma_{11} \\ \sigma_{12} \\ \sigma_{13} \end{bmatrix} d\Gamma
\]

Here \(\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4, \Gamma_5, \) and \(\Gamma_6 \), respectively, correspond to the edges \(x_1 = a, x_1 = 0, x_2 = b, x_2 = 0, x_3 = h, \) and \(x_3 = 0 \). Surface tractions prescribed on the top (\(\Gamma_5 \)) and the bottom (\(\Gamma_6 \)) surfaces are denoted below in Eq. (18) with a superimposed bar. Substituting from Eq. (15) into Eq. (9) and transferring terms involving \(\sigma_\Omega \) on surfaces \(\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4 \) from the RHS to the LHS we get

\[
K_S \sigma = F_S
\]

where

\[
K_S = \sum_{c=1}^{N_e} \int_{\Gamma_c} B_b^T N d\Gamma + \int_{\Omega_c} N^T \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} N d\Omega + \int_{\Gamma_c} N^T \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} N d\Gamma
\]

and
Comparison of through-the-thickness transverse stresses (Unit: GPa).

Table 1

<table>
<thead>
<tr>
<th>x_3</th>
<th>σ_{13}</th>
<th>σ_{23}</th>
<th>σ_{33}</th>
<th>SRS σ_{13}</th>
<th>SRS σ_{23}</th>
<th>SRS σ_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.14</td>
<td>-0.67</td>
<td>-17.67</td>
<td>14.14</td>
<td>-0.67</td>
<td>-17.67</td>
</tr>
<tr>
<td>0.01</td>
<td>14.00</td>
<td>-0.54</td>
<td>-17.87</td>
<td>14.00</td>
<td>-0.54</td>
<td>-17.87</td>
</tr>
<tr>
<td>0.02</td>
<td>13.87</td>
<td>-0.40</td>
<td>-18.07</td>
<td>13.87</td>
<td>-0.40</td>
<td>-18.07</td>
</tr>
<tr>
<td>0.03</td>
<td>13.73</td>
<td>-0.27</td>
<td>-18.27</td>
<td>13.73</td>
<td>-0.27</td>
<td>-18.27</td>
</tr>
<tr>
<td>0.04</td>
<td>13.60</td>
<td>-0.13</td>
<td>-18.48</td>
<td>13.60</td>
<td>-0.13</td>
<td>-18.48</td>
</tr>
<tr>
<td>0.05</td>
<td>13.46</td>
<td>0.00</td>
<td>-18.68</td>
<td>13.46</td>
<td>0.00</td>
<td>-18.68</td>
</tr>
<tr>
<td>0.06</td>
<td>13.33</td>
<td>0.13</td>
<td>-18.88</td>
<td>13.33</td>
<td>0.13</td>
<td>-18.88</td>
</tr>
<tr>
<td>0.07</td>
<td>13.19</td>
<td>0.27</td>
<td>-19.08</td>
<td>13.19</td>
<td>0.27</td>
<td>-19.08</td>
</tr>
<tr>
<td>0.08</td>
<td>13.06</td>
<td>0.40</td>
<td>-19.28</td>
<td>13.06</td>
<td>0.40</td>
<td>-19.28</td>
</tr>
<tr>
<td>0.09</td>
<td>12.92</td>
<td>0.54</td>
<td>-19.49</td>
<td>12.92</td>
<td>0.54</td>
<td>-19.49</td>
</tr>
<tr>
<td>0.1</td>
<td>12.79</td>
<td>0.67</td>
<td>-19.69</td>
<td>12.79</td>
<td>0.67</td>
<td>-19.69</td>
</tr>
</tbody>
</table>

* $[\sigma_{13}(x_3), \sigma_{23}(x_3), \sigma_{33}(x_3)] = [\sigma_{13}(0.05, 0.5, x_3), \sigma_{23}(0.5, 0.05, x_3), \sigma_{33}(0.25, 0.25, x_3)]$
As a second example problem, we study deformations of a $1 \times 1 \times 0.2$ m3 simply supported 45° fiber-reinforced graphite/epoxy lamina subjected to the sinusoidal load, $q_0 \sin(x_1/a) \sin(x_2/b)$. perpendicular to the top surface and having following values of the material parameters: $E_1 = 132.5$ GPa, $E_2 = E_3 = 10.8$ GPa, $G_{12} = G_{13} = 5.7$ GPa, $G_{23} = 3.4$ GPa, $\nu_{23} = \nu_{13} = 0.24$, and $\nu_{23} = 0.49$. The problem is analytically solved using Srinivasa and Rao’s approach (Srinivas & Rao, 1970), and the in-plane stresses so found are used to compute the RHS of Eq. (16). In Table 3 we have compared the normalized transverse stresses

$$
\left[\hat{\sigma}_{13}, \hat{\sigma}_{23}, \hat{\sigma}_{33} \right] = \frac{1}{q_0} \left[\sigma_{13}(0.1a, 0.5b, 0.5h), \sigma_{23}(0.5a, 0.1b, 0.5h), \sigma_{33}(0.5a, 0.5b, 0.5h) \right]
$$

computed using various FE meshes with their values from the analytical solution. It is clear that with the FE mesh refinement, the SRS results converge to the analytical solution. Except for the $80 \times 80 \times 4$ and $80 \times 80 \times 6$ FE meshes, the SRS transverse stresses differ from their analytical values by less than 1%.

Fig. 3 shows through-the-thickness distributions of the transverse shear stresses σ_{13} and σ_{23} near the edges $x_1 = 0$ and $x_2 = 0$, and of the transverse normal stress σ_{33} at the plate center. The black dashed lines and red “+” markers, respectively, correspond to the SRS and the analytical solution. The SRS results are in excellent agreement with those of the analytical solution.

3.2. Simply-supported 45° fiber-reinforced lamina

The efficiency of the proposed SRS scheme to calculate transverse stresses is investigated for a simply-supported square [0°/90°] laminate having the same geometry, loading and material properties as that for the lamina in Section 3.2. This problem is also analytically solved with Srinivas and Rao’s approach. It is evident from the plots exhibited in Fig. 4 of the through-the-thickness distributions of the SRS computed transverse stresses using the $60 \times 60 \times 30$ uniform FE mesh and their values from the analytical solution that two sets of results are in excellent agreement with each other and the transverse stresses are continuous across the interface between the two layers.

Remarks:

Recall that the methodology presented here for simultaneously recovering transverse stresses at all points in a plate only requires values of in-plane Cauchy stresses and the deformed shape of the plate. Thus, it applies to finite deformation problems.

No step in the derivation of the procedure requires that the plate be made of either an isotropic or a homogeneous material. Since in-plane stresses are a priori known, the inhomogeneity of the material properties has been considered in evaluating them.

Table 2

Comparison of transverse stresses at points along the line $x_1 = 0.5$ m, $x_2 = 0.05$ m (Unit: GPa).

<table>
<thead>
<tr>
<th>x_2</th>
<th>Analytical σ_{13}</th>
<th>Analytical σ_{23}</th>
<th>Analytical σ_{33}</th>
<th>SRS σ_{13}</th>
<th>SRS σ_{23}</th>
<th>SRS σ_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.58</td>
<td>0.67</td>
<td>-48.13</td>
<td>25.58</td>
<td>0.67</td>
<td>-48.13</td>
</tr>
<tr>
<td>0.1</td>
<td>24.37</td>
<td>-0.67</td>
<td>-43.21</td>
<td>24.37</td>
<td>-0.67</td>
<td>-43.21</td>
</tr>
<tr>
<td>0.2</td>
<td>23.15</td>
<td>-2.02</td>
<td>-38.30</td>
<td>23.15</td>
<td>-2.02</td>
<td>-38.30</td>
</tr>
<tr>
<td>0.3</td>
<td>21.94</td>
<td>-3.37</td>
<td>-33.39</td>
<td>21.94</td>
<td>-3.37</td>
<td>-33.39</td>
</tr>
<tr>
<td>0.4</td>
<td>20.73</td>
<td>-4.71</td>
<td>-28.47</td>
<td>20.73</td>
<td>-4.71</td>
<td>-28.47</td>
</tr>
<tr>
<td>0.5</td>
<td>19.52</td>
<td>-6.06</td>
<td>-23.56</td>
<td>19.52</td>
<td>-6.06</td>
<td>-23.56</td>
</tr>
<tr>
<td>0.6</td>
<td>18.31</td>
<td>-7.40</td>
<td>-18.64</td>
<td>18.31</td>
<td>-7.40</td>
<td>-18.64</td>
</tr>
<tr>
<td>0.7</td>
<td>17.10</td>
<td>-8.75</td>
<td>-13.73</td>
<td>17.10</td>
<td>-8.75</td>
<td>-13.73</td>
</tr>
<tr>
<td>0.8</td>
<td>15.99</td>
<td>-10.10</td>
<td>-8.82</td>
<td>15.99</td>
<td>-10.10</td>
<td>-8.82</td>
</tr>
<tr>
<td>0.9</td>
<td>14.87</td>
<td>-11.44</td>
<td>-3.90</td>
<td>14.87</td>
<td>-11.44</td>
<td>-3.90</td>
</tr>
<tr>
<td>1</td>
<td>13.77</td>
<td>-12.79</td>
<td>1.01</td>
<td>13.77</td>
<td>-12.79</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table 3

Convergence of transverse stresses in a square simply-supported transversely isotropic lamina (FE Mesh $60 \times 80 \times 20$ represents 60, 80 and 20 elements in the x_1, x_2, and x_3 directions, respectively).

<table>
<thead>
<tr>
<th>FE Mesh</th>
<th>σ_{13}</th>
<th>σ_{23}</th>
<th>σ_{33}</th>
<th>σ_{13}</th>
<th>σ_{23}</th>
<th>σ_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 × 20</td>
<td>1.7561</td>
<td>0.4506</td>
<td>0.5017</td>
<td>0.80 × 0.80</td>
<td>1.6749</td>
<td>0.4429</td>
</tr>
<tr>
<td>40 × 40</td>
<td>1.7507</td>
<td>0.4492</td>
<td>0.5002</td>
<td>0.80 × 0.60</td>
<td>1.8402</td>
<td>0.4675</td>
</tr>
<tr>
<td>60 × 60</td>
<td>1.7497</td>
<td>0.4490</td>
<td>0.4999</td>
<td>0.80 × 0.10</td>
<td>1.7848</td>
<td>0.4558</td>
</tr>
<tr>
<td>80 × 80</td>
<td>1.7494</td>
<td>0.4489</td>
<td>0.4998</td>
<td>0.80 × 0.20</td>
<td>1.7494</td>
<td>0.4489</td>
</tr>
<tr>
<td>100 × 100</td>
<td>1.7492</td>
<td>0.4488</td>
<td>0.4998</td>
<td>0.80 × 0.30</td>
<td>1.7562</td>
<td>0.4499</td>
</tr>
<tr>
<td>120 × 120</td>
<td>1.7491</td>
<td>0.4488</td>
<td>0.4997</td>
<td>0.80 × 0.40</td>
<td>1.7518</td>
<td>0.4491</td>
</tr>
<tr>
<td>Analytical</td>
<td>1.7522</td>
<td>0.4490</td>
<td>0.4976</td>
<td>0.80 × 0.20</td>
<td>1.7518</td>
<td>0.4491</td>
</tr>
</tbody>
</table>
computation of transverse stresses requires only using the principle of virtual work, which is applicable to a heterogeneous and anisotropic plate.

The problem formulation uses the divergence theorem in deriving Eq. (4). Thus, it is applicable to a plate occupying a normal region (see Section 2, page 85 of (Kellog, 1953)) in the reference (deformed) configuration for infinitesimal (finite) deformations.

For plates of variable thickness, the FE mesh, in general, will not have uniform elements. In the FE method, one usually maps a FE onto a master element and performs integrations over the master element. The Jacobian of the mapping from the master element onto the actual FE will have different values at the Gauss quadrature points. For a sufficiently refined FE mesh and an appropriate number of quadrature points, these integrals can be evaluated to the desired accuracy. Furthermore, the plate region can be subdivided into hexahedral elements.

Other basis functions such as those derived by the moving least squares approximation can be employed in place of the FE basis functions. A FE basis function associated with a node equaling one there and zero at the remaining nodes facilitates the interpretation of the computed transverse stresses.

Even though we have presented results for a rectangular plate, the methodology is applicable to circular and polygonal plates. The accuracy of the recovered transverse stresses near the corners will depend upon that of the in-plane stresses there. We hope to present results for these plates and for finite deformation problems in future studies.

4. Conclusions

We have developed a novel one-step stress recovery scheme (SRS) that does not require spatial derivatives of in-plane stresses and simultaneously provides values of transverse stresses at all points in the plate domain. It uses the principle of virtual work to equate the work done by the transverse stresses to the difference between that done by the applied surface tractions and the in-plane stresses. Using the finite element (FE) basis functions (or any other set of linearly independent basis functions defined on the plate domain), one can derive a set of simultaneous algebraic equations for the three transverse stresses at the nodes. These algebraic equations are modified to satisfy the applied surface tractions on either the bottom or the top surface of the plate. The accuracy of the computed transverse stresses can be enhanced by refining the FE mesh. The technique is highly versatile since it is applicable to all regions for which the divergence theorem is applicable. It is robust since it simultaneously finds the three transverse stresses at all plate points. It can be easily incorporated into a commercial FE software. Significant advantages of the proposed technique include using values of only in-plane stresses at the integration points, and finding transverse stresses simultaneously at all points of the plate.

Fig. 3. Through-the-thickness distributions of the transverse stresses: a) σ_{13}, b) σ_{23}, and c) σ_{33} for a simply-supported square transversely isotropic lamina.

Fig. 4. Through-the-thickness distributions of the transverse stresses: a) σ_{13}, b) σ_{23}, and c) σ_{33} for a square $[0^\circ/90^\circ]$ laminate.
Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

The financial support of the work from the U.S. Office of Naval Research (ONR) through grants N00014-18-1-2548, N00014-20-1-2876, and N00014-21-1-2283 with Y. D. S. Rajapakse as the Program Manager, to Virginia Polytechnic Institute and State University (Virginia Tech) is gratefully acknowledged. Views expressed in the paper are those of the authors and neither of the funding agency nor of Virginia Tech.

Appendix

We list below expressions for the stresses, the body forces, and the surface tractions obtained from the displacement field listed as Eq. (19) in Section 3.1.

Stresses:

\[
\sigma_{11}(x_1, x_2, x_3) = \left(1543876923076923x_3(2x_2x_3)\right)/16384 + \left(132332307692307x_1(x_2 - 1)\right)/32768 + \left(132332307692307x_2(x_1 - 1)\right)/32768
\]

\[
\sigma_{22}(x_1, x_2, x_3) = \left(132332307692307x_2x_3\right)/32768 + \left(132332307692307x_1(x_2 - 1)\right)/32768 + \left(1543876923076923x_2(x_1 - 1)\right)/16384
\]

\[
\sigma_{33}(x_1, x_2, x_3) = \left(132332307692307x_3\right)/32768 + \left(1543876923076923x_3(x_1 - 1)\right)/16384 + \left(132332307692307x_3(x_2 - 1)\right)/32768
\]

\[
\sigma_{12}(x_1, x_2, x_3) = (7057723076923077(2x_1 - 1)(x_2 - 1))/262144 + (7057723076923077x_1(x_1 - 1))/262144
\]

\[
\sigma_{23}(x_1, x_2, x_3) = (7057723076923077(x_2 - 1)(x_3 - 1))/262144 + (7057723076923077x_2x_3)/262144
\]

Body Forces:

\[
f_1(x_1, x_2, x_3) = 17644307692307692/262144 - (17644307692307693x_1)/262144 - (17644307692307693x_2)/262144
\]

\[
f_2(x_1, x_2, x_3) = -\left((17644307692307693x_1)/262144 - (17644307692307693x_2)/262144\right)
\]

\[
f_3(x_1, x_2, x_3) = 17644307692307693/262144 - (17644307692307693x_3)/262144 - (17644307692307693x_1)/262144
\]

Surface Traction

Left edge surface, \(x_1 = 0\)

\[
\sigma_{11}(0, x_2, x_3) = (1323323076923077x_3)/32768 - (1543876923076923x_2x_3)/16384
\]

\[
\sigma_{12}(0, x_2, x_3) = -(7057723076923077x_2 - 1)/262144
\]

\[
\sigma_{13}(0, x_2, x_3) = -(7057723076923077x_2 - 1)(x_3 - 1)/262144
\]

Right edge surface, \(x_1 = a = 1\)

\[
\sigma_{11}(a, x_2, x_3) = (1323323076923077x_2)/32768 + (1543876923076923x_2x_3)/16384 - 1323323076923077/32768
\]

\[
\sigma_{12}(a, x_2, x_3) = (7057723076923077x_2x_3)/262144
\]

\[
\sigma_{13}(a, x_2, x_3) = (7057723076923077x_2)/262144 + (7057723076923077x_2 - 1)(x_3 - 1))/262144
\]

Back surface, \(x_2 = 0\)

\[
\sigma_{12}(x_1, 0, x_3) = -(7057723076923077x_3(x_1 - 1))/262144
\]

\[
\sigma_{22}(x_1, 0, x_3) = (1323323076923077x_3)/32768 - (1543876923076923x_3(x_1 - 1))/16384
\]

\[
\sigma_{23}(x_1, 0, x_3) = (7057723076923077x_3)/262144 - (7057723076923077x_3(x_1 - 1))/262144 - 7057723076923077/262144
\]

Front surface, \(x_2 = b = 1\)

\[
\sigma_{12}(x_1, b, x_3) = (7057723076923077x_3(x_1))/262144
\]

\[
\sigma_{22}(x_1, b, x_3) = (1323323076923077x_3)/32768 + (1543876923076923x_3(x_1 - 1))/16384
\]

\[
\sigma_{23}(x_1, b, x_3) = (7057723076923077x_3(x_3 - 1))/262144
\]
Bottom surface, $x_3 = 0$

$$\sigma_{11}(x_1, x_2, 0) = \frac{705772030169230777}{262144} - \frac{705772030169230777}{262144} - \frac{705772030169230777}{262144}$$

$$\sigma_{22}(x_1, x_2, 0) = \frac{705772030169230777(x_1 - 1)}{262144} - \frac{705772030169230777(x_1 - 1)}{262144}$$

$$\sigma_{33}(x_1, x_2, 0) = -\frac{1543876923076923(x_2 - 1)}{16384}$$

Top surface, $x_3 = h$

$$\sigma_{11}(x_1, x_2, h) = \frac{6351907692307693x_2}{262144} + \frac{6351907692307693x_2}{262144}$$

$$\sigma_{22}(x_1, x_2, h) = \frac{6351907692307693x_2}{262144} - \frac{6351907692307693x_2}{262144}$$

$$\sigma_{33}(x_1, x_2, h) = \frac{132332030169230777x_1}{32768} + \frac{132332030169230777x_2}{32768} + \frac{1543876923076923x_2(x_2 - 1)}{16384} - \frac{132332030169230777x_1}{32768}$$

References

