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Abstract. We analyze the initiation and propagation of a crack from a point on the surface of a circular notch-tip
in an impact loaded prenotched plate. The material of the plate is assumed to exhibit strain hardening, strain-rate
hardening, and softening due to the rise in temperature and porosity. The degradation of material parameters due
to the evolution of damage in the form of porosity is considered. Brittle failure is assumed to initiate when the
maximum tensile principal stress at a point reaches a critical level. Ductile failure is assumed to ensue when the
effective plastic strain reaches a critical value. A crack initiating from the node where a failure first occurs is taken
to propagate to the adjacent node that has the highest value of the failure parameter (the maximum tensile principal
stress or the effective plastic strain). The opening and propagation of a crack are modeled by the node release
technique. Surface tractions and the normal component of the heat flux are taken to be null on the newly created
crack surfaces. For the brittle failure, the stress field around the crack tip resembles that in mode-I deformations
of a prenotched plate loaded in tension. The distribution of the effective plastic strain in a small region around the
surface of the notch-tip is not affected much by the initiation of a ductile fracture there except for a shift in the
location of the point where the effective plastic strain is maximum. The initiation of the ductile failure is delayed
when a crack is opened at the point where the brittle failure ensues.

Key words: Crack propagation, failure mode transition, finite element solution, hyperbolic heat equation, micro-
porous thermoviscoplastic material.

1. Introduction

Modeling the propagation of a crack during the solution of a transient mechanical problem
by the finite element method (FEM) is challenging since the mesh needs to be modified and
boundary conditions of null tractions imposed on the newly created crack surfaces. Three
strategies used to study fracture are: (i) reducing stresses in the failed region through the
evolution of damage in the material, (ii) representing a crack as two traction free surfaces,
and (iii) introducing cohesive elements along interelement boundaries that are weak in shear
and tension but very strong in compression (Needleman, 1987). Whereas every component
of the stress tensor is assumed to drop either gradually or instantaneously to zero in the first
approach, only tractions normal and tangent to the crack surfaces drop suddenly to zero in the
second approach. It is easier to model crack propagation along inter-element boundaries than
to model intra-element crack propagation since in the former no new elements are created
while in the latter they are. However, requiring a crack to propagate along an inter-element
boundary necessitates an a priori assumption on the path of the propagating crack that may
not correctly represent the crack’s true path. The accuracy of the inter-element approach can
be improved by using a very fine mesh in the region where cracks are expected to initiate and
propagate.
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Here crack propagation along inter-element boundaries is used to analyze the initiation
and propagation of brittle and ductile fractures from points in the vicinity of a notch-tip in an
impact loaded prenotched metallic plate. Previous numerical studies (e.g., see, Needleman and
Tvergaard, 1995; Zhou et al. 1996b; Batra and Nechitailo, 1997; Batra and Gummalla, 2000;
Batra and Ravisankar, 2000; Batra and Jaber, 2001; Batra et al., 2003), of this problem have
focused on the initiation of the two failure modes and the impact speed at which the failure
mode transitions from brittle to ductile. The interest in the problem was generated by the
experimental work of Kalthoff and Winkler (1987) and Kalthoff (1987) who observed that the
failure mode in an impact loaded prenotched steel plate transitioned from brittle to ductile with
an increase in the impact speed. Whereas Batra and Ravisankar (2000) studied 3-dimensional
locally adiabatic deformations of the thermoviscoplastic impactor and the thermoviscoplastic
plate, other works analyzed plane strain deformations of the system. Except for Batra and
Nechitailo (1997), Batra and Ravisankar (2000) and Batra and Gummalla (2000), other works
replaced the action of the impactor on the plate by prescribing a normal velocity on the
impacted surface of the plate. The 3-dimensional simulations of Batra and Ravisankar (2000)
have shown that deformations of the central 3/4th of the plate closely resemble those obtained
from the assumption of plane strain but those of points on or adjacent to the front and the
rear surfaces of the plate are quite different. Batra and Gummalla (2000) have delineated the
effect of different material and geometric parameters on the initiation of the two failure modes.
Batra and Jaber (2001) found that four thermoviscoplastic relations calibrated against the same
torsion test data predicted quite different values of the impact speed at which failure mode
transitions from brittle to ductile. However, deformations of points around the notch-tip were
qualitatively similar for the four thermoviscoplastic relations; a similar result was obtained
by Batra and Kim (1990) and Batra and Chen (2002) for simple shearing deformations of
a thermoviscoplastic body. Batra et al. (2003) found that the shape of the notch-tip and the
presence of a circular hole ahead of the notch-tip significantly affected when and where failure
initiated, and hence the failure mode transition speed. For example, for a sharp elliptic notch,
the ductile failure preceded the brittle failure at all impact speeds but for a circular notch-
tip the failure mode transitioned from brittle to ductile with an increase in the impact speed.
It should be mentioned that in Zhou et al.’s (1996a) experiments on prenotched steel plates
only ductile failure was observed. They found that no failure ensued at low impact speeds
but at high impact speeds a shear band initiating from a point on the notch-tip propagated
nearly parallel to the notch-axis, got arrested and a crack originated from the shear band tip.
They attributed the difference in their and Kalthoff’s experimental results to different values
of material parameters. Kalthoff listed only the Rockwell hardness for the steel tested and
did not provide stress-strain curves. Zhou et al. (1996b) evaluated material parameters for
their steel by curve fitting. Ravi-Chandar et al. (2000) examined experimentally failure modes
in asymmetrically loaded prenotched plates made of two polymers, polycarbonate (PC) and
polymethylmethacrylate (PMMA); the experimental set up is similar to that of Kalthoff. With
an increase in the impact speed, PC was shown to exhibit a failure mode transition from ductile
to brittle at about 29 m/s, and a second failure mode transition from brittle to ductile as the
impact speed was increased beyond 55 m/s. The second transition resulted in a shear band
near the crack tip. No failure mode transition occurred in PMMA because of its inability to
undergo large inelastic deformations under tension.

Whereas the failure mode transition in the Kalthoff problem has been analyzed numerically
as noted above, how the crack opening at the point of initiation of brittle failure influences
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Figure 1. Schematic sketch of the problem studied. The notch-tip radius is 0.15 mm.

deformation fields around the notch-tip and the initiation time of ductile failure has not been
scrutinized yet; we do so here.

2. Formulation of the Problem

A schematic sketch of the problem studied in shown in Figure 1. The left edge surface of the
prenotched steel plate with two edge notches is struck, at normal incidence, by a cylindrical
rod of diameter equal to the distance between the two notches. The impactor and the plate
are made of the same material that is modeled as isotropic, homogeneous, microporous and
thermoviscoplastic. We use rectangular Cartesian coordinates and the referential description
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of motion to describe their deformations which are governed by the balance of mass, the bal-
ance of linear momentum, the balance of moment of momentum, and the balance of internal
energy. Equations expressing these balance laws are:[

ρ(1 − f )J
]• = 0, (1)

ρ0(1 − f0)v̇i = Tiα,α, i, j = 1, 2, α = 1, 2, (2)

TiαFjα = TjαFiα, (3)

ρ0(1 − f0)ė = −Qα,α + TiαḞiα. (4)

Here ρ is the present mass density, f the porosity (i.e., the volume fraction of voids), J =
det F, Fiα = xi,α = ∂xi/∂Xα the deformation gradient, x the present position at time t of
a material particle located at the place X in the reference configuration, T the first Piola-
Kirchhoff stress tensor, e the specific internal energy, Q the present heat flux measured per unit
reference area, v the velocity of a material particle, a superimposed dot indicates the material
time derivative, and a repeated index implies summation over the range of the index. Greek
indices refer to coordinates in the reference configuration, and Latin indices to coordinates in
the present configuration.

We assume that the strain-rate tensor D defined by Dij = (vi,j + vj,i)/2, vi,j = ∂vi/∂xj ,
has the additive decomposition into an elastic part De and a plastic part Dp, viz.,

D = De + Dp. (5)

Equations (1)–(5) are supplemented with the following constitutive relations:

σ̇ij + σikWkj − σjkWik = E(1 − f )

1 + ν
De

ij + E(1 − f )ν

(1 + ν)(1 − 2ν)
(De

kk − α̂θ̇ )δij , (6)

ė = cτ θ̈ + cθ̇ + 1

ρ(1 − f )
σijD

e
ij , (7)

Tiα = Jσij
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)
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, (8)

qi = −κ
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p = −(σ11 + σ22 + σ33)/3, p̄ = pH(−p − 0), (12)
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σij
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. (16)

The left-hand side of Equation (6) equals the Jaumann derivative of the Cauchy stress tensor
σ , Wij = (vi,j − vj,i)/2 is the spin tensor, E Young’s modulus, ν Poisson’s ratio, α̂ the
coefficient of thermal expansion, δij the Kronecker delta, c the specific heat, τ the thermal
relaxation time, κ the thermal conductivity of the solid material, and θ the present temperature
of a material particle. Batra and Jaber (2001) found that the Jaumann and the Green-Naghdi
stress rates in Equation (6) give virtually identical results for the initiation of a shear band
and a brittle failure at points near the surface of a notch-tip in a prenotched plate. This is
because elastic strain rates appearing in Equation (6) are very small as compared to the plastic
strain rates at points near the notch-tip. φ = 0 describes the yield surface proposed by Gurson
(1977) for a porous material, p is the hydrostatic pressure, and f ∗ the modified value of
the porosity given by (15). Gurson’s model is based on quasistatic analysis with the matrix
material modeled as rigid perfectly plastic and obeying von Mises yield criterion. Wang and
Jiang (1997) have considered inertia effects. Wang (1997) has analyzed transient deformations
of a single spherical void in a solid spherical shell made of a power-law heat-conducting
viscoplastic material. For a microporous material, Wang (1997) derived an approximate ex-
pression for the macro-stress potential through an upper bound approach. Constants β1 and β2,
introduced by Tvergaard (1981), provide a better fit of results computed from a FE analysis
of the formation of adiabatic shear bands in a plate having an array of large cylindrical voids
with test observations, and λ̇ is the factor of proportionality defined by (13). σy is the current
yield stress of the material whose dependence upon the effective plastic strain ε

p
e , the effective

plastic strain rate ε̇
p
e and the temperature θ is described by the Johnson-Cook (1983) relation

(16) in which A,B,C, ε̇
p

0 , and m, are material parameters, θr the room temperature and θm

the melting temperature of the material. Parameters B and n characterize the strain harden-
ing of the material, C and ε̇

p

0 the strain-rate hardening and the last factor on the right-hand
side of (16) its thermal softening. Equation (14) gives the evolution of the porosity; the first
term on its right-hand side is derived by assuming that the matrix is incompressible and the
elastic dilatation is negligible as compared to the plastic dilatation, and the second term is the
strain based nucleation of voids introduced by Chu and Needleman (1980). f2, s2 and εn are
material parameters; the rate of nucleation of voids is highest when ε

p
e equals εn and decays

exponentially with the difference between ε
p
e and εn. H is the Heaviside step function. Thus

the second term contributes to the evolution of the porosity at a point only when the hydrostatic
pressure there is tensile. To account for the coalescence of neighboring voids, Tvergaard and
Needleman (1984) enhanced the porosity, as given by Equation (15), after it reaches its critical
value fc. In Equation (15), ff is the porosity at ductile fracture, and fu = 1/β1 is the porosity
when the yield surface has shrunk to a point. Equations (10) and (16) imply that the radius of
the von Mises yield surface increases due to strain- and strain-rate hardening of the material
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but decreases due to the softening induced by the temperature rise and the increase in porosity.
The degradation of material properties due to the damage, taken here synonymous with the
porosity, is indicated by Equations (6)–(10). The affine variation with the porosity of Young’s
modulus, the bulk modulus, the stress-temperature coefficient, and the heat capacity implies
that the rule of mixture has been employed to find their effective values; the expression for
the thermal conductivity in Equation (16) is due to Budiansky (1970). The interaction, if any,
among neighboring voids has been tacitly ignored. Jiang and Batra (2002), among others, have
considered this interaction. The shrinkage of the yield surface due to an increase in porosity
described by Equation (10) can be appreciated by plotting the yield surface for two different
values of f while keeping other variables fixed. Perzyna (1998) has given a different equation
for the evolution of porosity.

Substitution from Equations (5), (7) and (9) into (4) gives the following hyperbolic heat
equation:

ρ0(1 − f0)c(τ θ̈ + θ̇ ) =
(

κ

(
1 − 3

2
f

)
θ,α

)
,α

+ JσijD
p

ij . (17)

The term JσijD
p

ij equals the heating due to plastic working per unit reference volume; thus the
Taylor-Quinney parameter has been set equal to 1. Except for a delay in the time of initiation
of an adiabatic shear band other results remain unaffected by a lower value of the Taylor-
Quinney factor. The form (17) of the hyperbolic heat equation is due to Cattaneo (1958) and
Vernotte (1958). The thermal relaxation time τ in it represents the time required to establish
a steady state of heat conduction in an element suddenly exposed to a heat flux. According to
Chester (1963) τ equals 3κ/ρcV 2

0 where V0 is the speed of an elastic wave. Thus for a typical
steel, τ = 1 × 10−12s, and τ � 25 × 10−12s for copper. Batra and Lear (2004), and Chen and
Batra (2001) found that the finiteness of the thermal wave speed affects the time of initiation
of an adiabatic shear band in a typical steel and the spacing between adjacent bands only when
τ � 10−6s. Batra (1975) showed that a theory based on higher-order gradients of temperature
gives a hyperbolic heat equation. However, in such a material, either thermal waves propagate
at a finite speed or the linearized problem has a unique solution.

Initial and boundary conditions needed to complete the formulation of the problem are:

x(X, 0) = X, v(X, 0) = 0, θ(X, 0) = θ0, θ̇ (X, 0) = 0, ρ(X, 0) = ρ0,

ε
p
e (X, 0) = 0, f (X, 0) = f0(X),

TiαNα = 0 on �t , xi = x̄i on �v,QαNα = 0 on ∂�.

(18)

That is, the initial velocity and the initial rate of change of temperature are null, the initial
temperature is uniform θ0, and the initial mass density is uniform ρ0. The part �t of the
boundary ∂� of the region � occupied by the body in the reference configuration is traction
free and positions of material particles on �v are given as a function of time. Here �t and �v

have been taken to be disjoint for simplicity. Boundary conditions involving the prescription
of linearly independent components of TiαNα and xi at the same point on ∂� are admissible.
The entire boundary ∂�, including surfaces of the notch, is thermally insulated at all times.

On the edge surface �v of the plate impacted by the cylindrical rod, we set
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v1(t)/v0 =




0.3t, 0 � t � 2 µs,

(0.525 + 0.0375t), 2 < t � 10 µs,

0.9, 10 < t � 30 µs,

0.9 + (5.4 − 0.18t), 30 < t � 35 µs,

(19)

T21 = 0,Q1 = 0, t � 0,

T11 = 0, t > 35 µs.

Here, v0 is the speed of the projectile, v1 the velocity of the plate particles in the x1-direction,
the time t is reckoned from the instant of impact, and it has been assumed that the cylindrical
rod contacts the plate edge for 35 µs. However, during the last 5 µs of contact, the velocity of
plate particles gradually reduces to zero. Subsequently, the traction on the impacted surface
is set equal to zero. The expression (19) for v1 is deduced by fitting straight lines to the
data of Batra and Ravisankar (2000) who studied 3-dimensional deformations of the plate
and the projectile. Equations (19)6 and (19)7 imply that the contact surface is smooth and
thermally insulated. The stipulated boundary conditions simulate well experiments in which
the prenotched plate rests on a table top. The effects of the frictional force between the plate
and the table top and the heat conducted between the two have been neglected; the latter is
very small because of the extremely short time elapsed prior to the development of failure in
the plate.

Let ρ0, ε̇R,H, σ0 and θR be the reference mass density, the reference strain rate, the refer-
ence length, the reference stress and the reference temperature used to non-dimensionalize
quantities. Then in terms of nondimensional variables indicated by the same symbols as
before, Equations (2) and (17) become

αI(1 − f0)v̇i = Tiα,α, i = 1, 2, α = 1, 2, (20)

ρ0(1 − f0)(τ θ̈ + θ̇ ) = −αt

((
1 − 3

2
f

)
θ, α

)
,α

+ JσijD
p

ij , i, j = 1, 2, (21)

where

αI = ρ0ε̇
2
RH 2

σ0
, αt = κ

ρ0cH
2ε̇R

, θR = σ0

ρ0cH
2ε̇R

. (22)

αI and αt are nondimensional measures of inertia and heat conduction effects respectively.
Thus, for a given material, inertia effects are directly proportional to the square of the ref-
erence strain rate and the square of the reference length, and heat conduction effects are
inversely proportional to the reference strain rate and the square of the reference length. This
nondimensionalization of variables is the same as that employed by Batra and Kim (1992). A
possible choice for H is the notch-tip radius r0, and for ε̇r is v0/r0.

Batra and Jin (1994) used the aforestated problem formulation to analyze the initiation
of adiabatic shear bands in a microporous thermoviscoplastic body deformed in plane strain
tension. They used a parabolic heat equation, and adaptively refined FE meshes of 3-node tri-
angular elements. They showed that, for the steel studied, the softening of the material induced
by porosity evolution was considerably more than that caused by heating of the material due
to plastic working.
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We note that Batra and Kim (1990), Batra and Jaber (2001) and Batra and Chen (2001a)
have analyzed different aspects of shear banding with four different thermoviscoplastic re-
lations, namely, the Johnson-Cook (1983), the Litonski-Batra (e.g., see, Batra, 1988), the
Bodner-Partom (1975) and a power law. These relations were calibrated to give nearly the
same effective stress vs. the effective strain curve during homogeneous deformations of the
body. However, during inhomogeneous deformations, each one of the relations gave qualitat-
ively similar but quantitatively different results. The decision to use the Johnson-Cook rela-
tion here is based on the availability of values of thermomechanical parameters for different
materials.

3. Weak formulation of the problem

Equations (6), (8) and (3) imply that the balance of moment of momentum (3) is identically
satisfied. The present mass density can be computed from Equation (1) if the deformation
gradient and the current value of the porosity are known. Thus, the dependent variables to
be solved for are x, f and θ and the independent variables are X and t . Equations (20) and
(21) are second-order coupled non-linear hyperbolic partial differential equations for x and
θ . These can not be written explicitly in terms of x and θ since T is given by (8) and σ by
(6) which involves Dp and θ . In order to solve the problem numerically by the FEM, we first
derive its weak formulation.

Let w(X) be a smooth function that vanishes on �v . We take the inner product of Equa-
tion (20) with w, integrate the resulting eqn. over the region � occupied by the body in the
reference configuration, and use the divergence theorem and the natural boundary condition
(18)8 on �t to arrive at∫

�

αI (1 − f0)v̇iwid� = −
∫

�

wi,αTiαd� +
∫

�t

wi t̄id�. (23)

Let ψ1, ψ2, . . . , ψn be FE basis functions defined on �. We write

vi =
nodes∑
A=1

ψA(X)ṽAi(t), i = 1, 2,

wi =
nodes∑
A=1

ψA(X)cAi, i = 1, 2.

(24)

Here ṽ is the vector of velocities of nodes, and c’s are constants. Substituting from (24) into
(23) and exploiting the fact that the resulting eqn. must hold for all choices of c’s we get

M ˙̃v = Fext − Fint,

MAB =
∫

�

αI (1 − f0)ψAψBd�,

F int
Ai =

∫
�

ψA,αTiαd�,

F ext
Ai =

∫
�t

ψAt̄id�,

(25)
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where t̄i is the traction vector prescribed on the boundary �t . For our problem, t̄i = 0.
In order to derive a weak form of Equation (21) we first introduce an auxiliary variable

defined by

ξ = θ̇ , (26)

and adopt the same procedure as that used to derive Equation (25)1 with the following result:

˙̃
θ = ξ̃ ,

τH ˙̃
ξ + Hξ̃ = Fθ + Q̄,

(27)

where

HAB =
∫

�

ρ0(1 − f0)ψAψBd�,

F θ
A =

∫
�

αt

(
1 − 3

2
f

)
θ,αψA,αd�,

QA =
∫

�

ψAJ tr(σDp)d�.

(28)

Note that the natural boundary condition of zero heat flux has been embedded in Equa-
tion (27)2.

We solve Equation (16) for ε̇
p
e in terms of σy , εp

e and θ and derive its weak form in the same
way as before except that the divergence theorem is not used. Recall that ε̇

p
e > 0 only when

a material point is deforming plastically as signified by the satisfaction of Equation (10)1;
otherwise ε̇

p
e = 0. Weak forms of Equations (6), (14) and

ẋ = v(X, t), (29)

are also derived. We thus get coupled nonlinear ordinary differential equations

ḋ = F, (30)

where d is the vector of unknowns and F is the force vector that depends upon time t and
d(t). The twelve unknowns at a node are {x1, x2, v1, v2, σ11, σ22, σ12, σ33, f, θ, ξ, ε

p
e }. For a

3-node triangular element, each one of these variables is a polynomial of degree 1 in the X1

and X2 coordinates of nodes. Recall that natural boundary conditions are embedded in (30).
Equations (30) are modified to enforce essential boundary conditions (19) at nodes on the
impact surface, and are then integrated by using the subroutine LSODE (Livermore Solver for
Ordinary Differential Equations) with parameter MF in LSODE set equal to 10 and parameters
ATOL = RTOL = 10−7. ATOL and RTOL control the absolute and the relative tolerances in the
computed solution. MF = 10 implies that the subroutine uses the Adams-Moulton method
of integrating ODEs. LSODE adaptively adjusts the size of the time step and the order of the
method in order to compute the solution within the prescribed accuracy. The subroutine can
be downloaded from the internet.
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4. Failure criteria

In order to determine the impact speed at which the failure mode changes from brittle to
ductile or vice-versa, we need a criterion for the failure mode initiation. Ritchie et al. (1973)
have proposed that the brittle failure initiates at a point when σp/σ0 = 3.0 over a certain
length which is characteristic of the microstructure of the material and generally equals a
grain diameter. Here σp is the maximum tensile principal stress at a point and σ0 the yield
stress in a quasistatic simple tension test. Tensile experiments of Hendrickson et al. (1958) at
nominal stress rates of about 1 to 104 MPa s−1 show that brittle failure occurs at σp/σ0 = 2.34
for a prenotched steel specimen with a yield stress of 705 MPa. This value of σp/σ0 was
found to be essentially independent of the temperature and the rate of loading. In numerical
simulations, Zhou et al. (1996b), Batra and Gummalla (2000); Batra and Ravisankar (2000),
Batra and Jaber (2001), and Batra et al. (2003) presumed that the brittle failure initiates when
σp/σ0 = 3.0, 2.0, 2.0, 2.34 and 2.34, respectively. Here, we assume that the brittle failure
initiates when σp/σ0 = 2.0. Our goal is to analyze the effect crack opening and propagation
has on the deformation fields; thus, the precise value of σp/σ0 at the instant of the brittle
failure initiation is less critical.

Ductile failure is generally believed to occur due to the nucleation and coalescence of
voids within an adiabatic shear band (ASB). However, previous analyses of the problem by
Needleman and Tvergaard (2000), and Batra and Jaber (2001) have shown that the maximum
value of the porosity reached is about 0.03 which is far from 0.25, the value for the initiation
of a ductile failure (e.g., see, Curran et al., 1987). Accordingly, the ductile failure is assumed
to initiate at a point when an ASB forms there.

Batra and Rattazzi (1997) studied the initiation and propagation of an ASB in a thick-
walled steel tube and found that the choice of the ASB formation criterion will affect the
predicted initiation time. They used four different criteria: (i) the effective plastic strain at a
point equals 0.5 and the material point is deforming plastically, (ii) the effective plastic strain
at a point equals 1.0 and the material point is deforming plastically, (iii) the effective stress
has dropped to 90% of its peak value and the material point is deforming plastically, and
(iv) the effective stress has dropped to 80% of its maximum value and the material point is
deforming plastically. By studying numerically the initiation of an ASB in twelve materials
deformed in simple shear, Batra and Kim (1992) proposed the ASB criterion like (iii) and
(iv). Since the time of initiation of an ASB depends upon the criterion, the impact speed
at which failure mode transition occurs will also depend upon this choice. Here we adopt
criterion (i). Zhou et al. (1996b) estimated the quasistatic yield stress of their C-300 steel to
be 2 GPa, and assumed that the ductile failure initiated at a point when the effective plastic
strain there equalled 0.04. Also, the flow stress was assumed to decrease exponentially with
the temperature rise. Their computations showed only ductile failure which is consistent with
their experimental observations.

5. Simulation of crack propagation

In order to simulate crack initiation and propagation, we assume that as soon as a failure
criterion is met at a node, say N , an additional node N∗, coincident with N but not connected
to it, is added to the FE mesh. The node N∗ is connected to the node N∗∗ that has the next
highest value of σp for the propagation of the brittle failure and of ε

p
e for the propagation

of the ductile failure. The elements are adjusted such that all nodes originally connected to
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N on one side of the newly formed crack are connected to N∗ instead. Thus lines NN∗∗
and N∗N∗∗ overlap at the instant of the initiation of a fracture and each is an interelement
boundary between two adjoining elements. Note that no new element is created; however, a
node is added, the element connectivity is modified and the number of unknowns is increased.
Subsequent deformations of the body will either move N and N∗ apart or tend to push them
together. In the former case, surface tractions and the normal component of the heat flux are
assumed to be null on the crack surfaces. In the latter case, in order to prevent interpenetration
of the material through the crack surfaces, small 2-node stiff-spring elements, weak in tension
but stiff in compression, are added between nodes N and N∗. The constitutive relation for the
stiff-spring is taken to be

F = kxn, (31)

where

k =




0, xn/x0 � 0,

E�

[
1 + (ηE − 1)

(
xn

x0

)2
]

, −1 � xn/x0 < 0,

ηE�, xn/x0 < −1.

(32)

Here F is the normal force between nodes N and N∗, E Young’s modulus of the matrix
material, xn the relative displacement between nodes N and N∗ normal to the crack surface, �

a characteristic length, and η is constant. Equations (31) and (32) imply that the normal force
between nodes N and N∗ equals zero when they are separate but tends to push them apart in
case of interpenetration.

6. Computation and discussion of results

Results are computed for a 4340 steel plate and impact speeds of 20, 30, 50 and 60 m/s. Values
of material parameters in the Johnson-Cook relation (16) and Equations (6), (7), (10), (14),
(31) and (32) are:

σ0 = A = 792.19 MPa, B = 509.51 MPa, C = 0.014,m = 1.03, n = 0.26, θm = 1793K,

α̂ = 10−6/K, κ = 38 W/mK, c = 477 J/kg K, ρ = 7840 kg/m3, ν = 0.27, τ = 10−8 s,

β1 = 1.5, β2 = 1.0, f2 = 0.04, s2 = 0.1, θr = 273K,E = 210 GPa,

εn = 10, fc = 0.15, fu = 2/3, ff = 0.25,

η = 10, x0 = 0.01 mm, � = 1 mm.

(33)

Because of the symmetry of the plate geometry and the initial and boundary conditions, de-
formations of the plate will be symmetric about the X1X3-plane passing through the plate
centroid. Thus deformations of the upper half of the plate are analyzed.

For values of material parameters listed in (33), the thermal wave speed equals 32 m/s
which is two orders of magnitude less than the speed of an elastic wave. Thus the size of the
time step in the numerical integration of the ODEs is governed by the speed of an elastic wave.

An unstructured mesh of 3,998 3-node triangular elements with 21 evenly spaced nodes
around the notch-tip generated by using TECPLOT is employed. Fine elements are placed



190 R.C. Batra and M.H. Lear

in the region around the notch-tip and the mesh gets coarser as one moves away from the
notch-tip. The mesh is quite coarse in the top left portion of the plate because the material
there is not deformed much. The computed results at different points on the notch-tip surface
for the nondimensional maximum principal stress (σp/2σ0) and the effective plastic strain
from this mesh were found to be very close to those from a finer mesh with 8,712 3-node
triangular elements and 41 evenly spaced nodes around the notch-tip. Furthermore, each set
of results essentially matched with that found in earlier studies of the problem (e.g., see, Batra
and Jaber, 2001); these are not reported here. In order to prevent contact between points on the
two surfaces of a notch during deformations of the prenotched plate, the surface of the notch
that is away from the impacted edge is taken to be inclined rather than being horizontal; the
same strategy was adopted by Batra and Nechitailo (1997), and Batra and Gummalla (2000).
It should not affect deformations of the material directly ahead of the impacted surface and of
material points on the notch-tip.

The impact of the plate by the rod causes a compressive longitudinal wave to travel into
the plate towards the notch-tip. For values of E, ν, and ρ used for the plate material, analyt-
ical speed for the longitudinal wave equals 5.77 mm/µs. Because of the interaction among
deformations of nodes as represented by nondiagonal mass and stiffness matrices, the com-
puted wave speed is usually larger than the analytical value; the difference between the two
speeds depends upon the FE mesh, and the method employed to integrate coupled ODEs (30).
Upon arrival of the wave at the notch-tip, the material there is significantly deformed because
deformations are essentially singular. The computed velocity field in the plate is similar to
that plotted in Figure 4 of Batra and Gummalla’s (2000) paper and is not shown here. Material
particles adjacent to the lower traction free surface of the notch move to the right, i.e., in the
direction of the applied velocity v0, and those close to the upper traction free surface of the
notch are essentially stationary till the loading wave arrives at the notch-tip. The displacement
in the direction of v0 of particles on the lower surface of the notch stretches material lines
on the curved surface of the notch, distorts the shape of the notch-tip, and induces a tensile
hoop stress at points on the upper surface of the notch-tip. The maximum tensile principal
stress occurs at a point inside the body near the notch surface at a point that in the reference
configuration makes an angle of approximately 70◦ counterclockwise with the notch-axis.
This point is hereafter referred to as point B. The effective plastic strain is maximum at a point
on the lower notch-tip surface. This point is hereafter referred to as point D. Coordinates of
points B and D in the reference configuration are (50.09 mm, 25.20 mm) and (50.08 mm,
24.87 mm), respectively. Lines joining B and D to the center of the circular notch-tip make
angles of 65.8◦ counterclockwise and 58.4◦ clockwise with the axis of the notch. These are in
general agreement with the observations of Kalthoff and Winkler (1987), and also of previous
numerical investigations (e.g., see, Batra and Jaber, 2001).

For an impact speed of 50 m/s, Figure 2a depicts contours of the nondimensional maximum
principal stress, (σp/2σ0), in a small region around the notch-tip immediately prior to the
occurrence of the brittle failure (σp/2σ0 = 1). For an impact speed of 60 m/s, Figure 2b depicts
contours of the effective plastic strain/the effective plastic strain at ductile failure (εp

e /εc)
in a small region around the notch-tip immediately prior to the onset of the ductile failure
(εp

e /εc = 1). It is clear from Figure 2 that brittle failure will initiate at a point close to the
upper notch surface and ductile failure will initiate at a point on the lower notch surface. The
shape of the plastically deformed zone indicates that deformations of the material near the
notch-tip correspond to neither pure pure mode-I nor pure mode-II; however, they are mode-
II dominant. At plate particles directly ahead of the notch-tip, we have plotted in Figure 2c
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Figure 2. Contours of the (a) nondimensional maximum principal stress at t = 18 µs for v0 = 50 m/s, (b) contours
of ε

p
e /εc at t = 15.1 µs for v0 = 60 m/s, and (c) the variation of the nondimensional shear stress at points directly

ahead of the notch tip.
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Figure 2. Continued.

the variation of the non-dimensional shear stress (σ12/σ0) with the distance from the notch-
tip. The traction free boundary condition on the notch surface requires that σ12 = 0 at the
notch-tip (r = 0). For v0 = 20 and 50 m/s, the shear stress variation evinces a boundary
layer in the sense that its magnitude increases rapidly, attains a maximum at r = 0.2 mm,
and then gradually decreases. The maximum value of |σ12| is not that much affected by the
impact speed. Ching and Batra (2001) were the first to identify this boundary layer; they
analyzed static elastic deformations of the prenotched plate by the meshless local Petrov-
Galerkin (MLPG) method. Batra and Ching (2002) studied elastodynamic deformations of a
prenotched plate by the MLPG method and computed time histories of the stress intensity
factors KI and KII . Results plotted in Figure 16 of their paper indicate that |K̇II | is higher
than |K̇I | and for 8 � t � 24 µs, |KII | continues to grow but |KI | is nearly constant for
t � 12 µs. Thus the mode-mixity parameter varies with time t , and results computed with
modeling a notch by a sharp crack may not represent the true state of deformation near a
notch-tip.

Time histories of evolution of the maximum principal tensile stress at point B and of the
effective plastic strain at point D are exhibited in Figures 3a and 3b. These plots reveal the
following: (i) the rate of rise of the effective plastic strain at point D and of the maximum
principal stress at point B increase with an increase in the impact speed, (ii) the change in
the peak value of the maximum principal stress induced at B is miniscule when the impact
speed is increased from 50 m/s to 60 m/s; however, the increase in the effective plastic strain
at D is considerable when the impact speed is increased from 50 m/s to 60 m/s, (iii) the brittle
failure will likely initiate first at impact speeds of 20 and 50 m/s and the ductile failure at an
impact speed of 60 m/s, (iv) the effective plastic strain rate increases with an increase in the
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Figure 3. For v0 = 20, 50, and 60 m/s, the time history of the evolution of (a) the nondimensional maximum
principal stress at point B and (b) ε

p
e /εc at point D; (c) The dependence of the time of intiation of the brittle and

the ductile fracture upon the impact speed, v0.
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impact speed, and (v) for v0 = 60 m/s, ε̇
p
e = 1.2 × 105/s, σ̇p � 450 MPa/s. The failure

mode transition speed can be read from Figure 3c where plots of the time of initiation of the
two failure modes against the impact speed are shown. Figure 3c indicates that the transition
speed for this material and configuration is approximately 54 m/s. This failure mode transition
speed differs noticeably from the 23 m/s computed by Batra and Jaber (2001) because of the
differences in the values of the material parameters and the criteria employed for the initiation
of the brittle and the ductile failures. Values of material parameters used by Batra and Jaber
(2001) were such that the material exhibited considerably more thermal softening than the
material studied here. Values of other material parameters in the two studies are also quite
different. We note that times of initiation of the brittle and the ductile failures indicated in
Figure 3c are without the opening of a crack. Once a crack starts from point B, the initiation
of the ductile failure occurs at t = 52 and 22.2 µs for v0 = 20 and 50 m/s, respectively.
Thus, the opening of a crack delays the initiation of the ductile failure, and the time lag is
significant at low impact speeds. Similarly, for v0 = 60 m/s when a crack develops at point
D, the initiation of the brittle failure at point B is postponed by 1.7 µs.

To simplify computations for the study of crack propagation, fracture is assumed to initiate
either at a point on the notch surface or at a point on the nearly circular arc next to the
notch surface. As shown in Figure 2, this method will accurately capture ductile fracture;
however, it will not precisely capture the time of initiation of the brittle fracture. Using this
assumption, the failure initiation times were 24.5 µs, 18.5 µs, and 15.2 µs for v0 = 20, 50,
and 60 m/s, respectively. The actual failure initiation times were found to be 21.4 µs, 18.16 µs,
and 15.2 µs. For v0 = 20 m/s, Figures 4a and 4b exhibit contours of the maximum principal
stress at t = 25 µs with and without modeling the opening of a crack at the point of initiation
of the brittle failure. When stress fields in Figures 4a and 4b are compared with each other, it
becomes apparent that the crack shifts the concentration of stresses from a point straight ahead
of the starter notch-tip to that near the crack-tip. The sharp gradients in the effective stress
formed adjacent to the traction free crack surfaces are due to oscillations associated with the
formation of new surfaces and consequent emanation of elastic unloading surface (Rayleigh),
longitudinal and transverse waves; the magnitude of oscillations diminishes with time. These
transients could possibly have been diminished by gradually rather than immediately reducing
the surface tractions to zero at points on the newly created surfaces. However, this was found
to inhibit the growth of the crack.

Computed results can only be compared qualitatively with those of Kalthoff (1987) since
he listed only the Rockwell hardness for the material of the plate. The time history of the crack
length is given in Figure 5a for v0 = 20 and 50 m/s. For both cases, the crack grows affinely
in time with a crack propagation speed of 1.6 km/s or 28% of the longitudinal wave speed for
this material.

For both impact speeds, the crack propagated along a path that made an angle of approxim-
ately 60◦ counterclockwise with the axis of the notch. In Kalthoff’s (1987) and Kalthoff and
Winkler’s (1987) experiments, the angle between the crack path and the notch axis equalled
70◦. In a PC prenotched plate, Ravi-Chandar et al. (2000) observed that the maximum crack
speed equalled about one-half of the Rayleigh wave speed. The crack in the PC plate initiated
after waves had been reflected from the boundaries several times and the crack-tip was found
to be under mixed-mode loading. As mentioned earlier Zhou et al. (1996a) did not observe
brittle failure in their similar experiments on steel plates. The deformed shape of the plate
after complete perforation (t = 80 µs) for v0 = 50 m/s is shown in Figure 5b.
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Figure 4. For v0 = 20 m/s, contours of the nondimensional maximum principal stress around the notch tip at
t = 20 µs (a) without, and (b) with the opening of a crack at the point where brittle failure initiates.
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Figure 5. (a) The time history of the crack length for brittle failure for v0 = 20 m/s and v0 = 50 m/s and (b) the
deformed shape of the plate at t = 100 µs for v0 = 50 m/s.
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Figure 6. For v0 = 60 m/s, contours of ε
p
e /εc in a small region around the notch tip at (a) t = 21.5 µs, and

(b) t = 33.5 µs.
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For v0 = 60 m/s, the ductile failure preceded the brittle failure and initiated from point D

on the notch surface. The ductile failure propagated along a line that in the present configura-
tion makes an angle of 15◦ clockwise with the notch axis. We have plotted in Figures 6a and
6b, contours of the effective plastic strain immediately after the initiation of a crack due to the
ductile failure, and at a later time. A comparison of results plotted in Figures 2b and 6a reveals
that the presence of a crack due to the ductile failure does not have a significant effect on the
general distribution of the effective plastic strain in a small region surrounding the lower
portion of the notch-tip. However, at points close to the crack surface, the effective plastic
strain is considerably higher than that at other points. In the deformed configuration depicted
in Figure 6b, a leaflet like opening has formed in the intensely deformed region surrounding
the lower surface of the notch-tip; a similar deformation pattern was computed by Batra and
Gummalla (2000) who used DYNA2D, a mesh comprised of 4-node quadrilateral elements
and neglected the effects of heat conduction and porosity. As the crack due to ductile failure
propagates, the leaflet is incorporated into the crack surface.

For v0 = 20 m/s, Figure 7a depicts the time history of the evolution of the effective plastic
strain at point D both with and without the opening of a crack from point B where the brittle
failure first occurs. It is clear that the opening of the crack at point B significantly influences
the effective plastic strain developed at point D. However, as should be apparent from the
results plotted in Figure 7b, the evolution of the principal stress at point B is not influenced by
the opening of a crack at point D because the principal stress at point B has fully developed
before a crack ensues from point D.

Contours of the temperature rise in the vicinity of the crack plotted in Figures 8a and 8b
reveal that the maximum temperature rise near the crack surface increases from about 475 K
to 775 K which equal approximately 25% and 45% of the melting temperature of the material.
The maximum temperature occurs at a point on the crack surface that is behind the crack tip.
The temperature rise at a point can be estimated by assuming that deformations are locally
adiabatic and the material perfectly plastic. For an effective plastic strain of 1.9, and material
parameters listed in (33), the approximate temperature rise equals (1.9) (792 × 106)/(7840 ×
477) or 402 K. This value will increase when effects of strain- and strain-rate hardening are
considered. The analysis was halted at t = 34 µs due to the excessive distortion of the mesh
in the vicinity of the leaflet region. The crack length of 0.36 mm at this instant indicates that
the ductile failure has not propagated much into the plate. A possibility is to adaptively refine
the mesh within the severely deformed region and transfer from the previous mesh the state of
deformation at nodes of the new mesh; however, this was not pursued because it smears out
the deformation fields.

As mentioned at the beginning of Section 6, results computed with two unstructured meshes
of 3,998 and 8,712 elements were found to be very close to each other. Nevertheless, nu-
merical values of failure initiation times and crack propagation speed depend upon the FE
mesh employed. One way to obtain mesh-independent results is to use a strain-rate gradient-
dependent theory, e.g. see Batra (1987), and Batra and Hwang (1994). Such theories involve a
material characteristic length and third-order spatial gradients of displacements in the problem
formulation thereby necessitating the use of either Hermitian basis functions or auxiliary
variables. At present, to our knowledge, there are no good ways of estimating the material
characteristics length. Furthermore, these theories may either not give a finite speed of elastic
waves or a unique solution of the linear elastic problem.
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Figure 7. (a) The time history of ε
p
e /εc at point D both with and without the opening of a crack at point B, and

(b) the time history of the nondimensional maximum principal stress at point B both with (solid line) and without
(dotted line) the opening of a crack at point D. The two curves in (b) are nearly coincident.



200 R.C. Batra and M.H. Lear

Figure 8. For v0 = 60m/s, contours of the temperature rise (K) in a small region around the notch tip at (a)
t = 17.1 µs, (b) t = 33.7 µs.



Simulation of brittle and ductile fracture in an impact loaded prenotched plate 201

7. Conclusions

We have analyzed transient coupled thermomechanical deformations of a prenotched 4340
steel plate whose edge between the two parallel notches is impacted by a cylindrical projectile
of diameter equal to the distance between the notches. The novel feature of the work is the
simulation of the initiation and propagation of cracks due to brittle and ductile failures. It has
been found that the brittle failure initiates first at low impact speeds and the ductile failure
occurs first at high impact speeds and that for this configuration and material the failure mode
transition occurs at an impact speed of approximately 54 m/s. The computed crack propaga-
tion speed of 1.6 km/s equals about 28% of the longitudinal wave speed of this material. The
crack due to the brittle failure propagates all the way through the plate and splits it into two
pieces. The opening of a crack at the point where brittle failure initiates delays the time of
initiation of the ductile failure or an adiabatic shear band. However, for the ductile failure the
propagation of only a small crack could be simulated due to excessive distortion of the mesh
in the intensely deformed region. The opening of a crack at the point of initiation of the ductile
failure does not influence the time of initiation of the brittle failure. The temperature rise in
the vicinity of this small crack equalled approximately 45% of the melting temperature of the
material. The initiation and propagation of a crack due to brittle failure noticeably influences
the growth of the effective plastic strain at a point on the notch surface.
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